Synthesis of Cycloalk-1-enylglycines

By MAMORU SUZUKI,* KEN-ICHI NUNAMI, and NAOTO YONEDA

(Research Laboratory of Applied Biochemistry, Tanabe Seiyaku Co. Ltd., 16–89 Kashima-3-chome, Yodogawa-ku, Osaka 532, Japan)

Summary Saponification of methyl N-formylcycloalkylideneglycinates (I) leads to migration of the double bond to afford N-formylcycloalk-1-enylglycines (II), which are converted into cycloalk-1-enylglycines (IV) by acid hydrolysis.

Some aliphatic $\beta\gamma$ -unsaturated α -amino acids¹ possess potent biological activity.² In particular, cyclic $\beta\gamma$ unsaturated amino acids such as cyclohex-l-enylglycine have recently received much attention as intermediates for synthesis of penicillin and cephalosphorin derivatives.³ Only a few methods have been reported for their synthesis, *e.g.* the Strecker syntheses using cyclohex-l-enecarbaldehyde⁴ and the nitrosation of cyclohex-l-enyl acetate followed by reduction.⁴ However, these methods lack versatility for synthesis of many types of cyclic amino acids.

We now report a method for the synthesis of cycloalk-lenylglycines from cycloalkylideneglycine derivatives. The starting cycloalkylidene derivatives (Ia—e) were easily prepared by the reaction of methyl isocyanoacetate with cycloalkanones according to the method reported by Schöllkopf *et al.*⁵

Saponification of the cycloalkylidene derivatives (Ia—e) with potassium hydroxide in methanol at 50 °C proceeded

easily giving high yields of the required N-formylcycloalk-1-enylglycines (IIa—e) as a result of migration of the $\alpha\beta$ -double bond to the $\beta\gamma$ -position. The structure of the resultant products (IIa—e) was confirmed by ¹H n.m.r. spectroscopy in (CD₃)₂SO: the α -methine proton ($\delta 4.7 - 5.0$) was coupled with the NH proton and changed to singlet upon exchange with D₂O; the vinyl proton appeared at $\delta 5.6 - 5.8$. Deformylation of (IIa—e) using hydrochloric

		TABLE			
(II)		(IV)			
Yield (%)	M.p./°C (decomp.)	Yield (%)	M.p./°C (decomp.)	¹ Η 1 α-CH	n.m.r.ª Vinyl-CH
87 80 ^b	149—151	90 55	$232-234 \\ 259-260$	$5.06 \\ 4.75$	6·20 6·20
87 ^b 90 79	175-177 144-145	49 92 93	216-217 237-238 217-218	$4.70 \\ 4.81 \\ 4.78$	$6.15 \\ 6.35 \\ 6.13$
	(Yield (%) 87 80 ^b 87 ^b 90 79	(II) Yield M.p./°C (%) (decomp.) 87 149—151 80^{b} — 87^{b} — 90 175—177 79 144—145	(II) (II) $(%) (decomp.) (%)$ 87	(II) (IV) (IV) (IV) (IV) (IV) (IV) (IV)	$(II) (IV)$ $(V) (IV)$ $(\%) (decomp.) (\%) (decomp.) \alpha-CH$ $(\%) (decomp.) (\%) (decomp.) \alpha-CH$ $(\%) (decomp.) \alpha-CH$ $(\%) (decomp.) (\%) (decomp.) \alpha-CH$ $(\%) ($

^a δ values from Me₄Si internal standard for solutions in CF₃CO₂D. ^b (IIb)' and (IIc) were obtained as mixtures with (IIIb) and (IIIc), respectively.

acid in tetrahydrofuran in the usual manner gave the corresponding cycloalk-1-enylglycines (IVa-e) in high yields (Table). In the case of (Ib) and (Ic), compounds (IIIb) and (IIIc), in which double bond migration had not taken place, were also formed (20-30% yields) in addition to (IIb) and (IIc), as shown by ¹H n.m.r. spectroscopy. However, these by-products were easily separated as the keto acid derivatives⁶ (Vb) and (Vc) by acid hydrolysis.

We thank Drs. I. Chibata, M. Miyoshi, and K. Matsumoto for encouragement.

(Received, 5th December 1977; Com. 1236.)

¹ J. E. Baldwin, S. B. Haber, C. Hoskins, and L. I. Kruse, J. Org. Chem., 1977, 42, 1239, and references cited therein.

- ¹ J. B. Bardwin, O. D. Haber, S. 1975, 8, 281.
 ² R. Rands, Accounts Chem. Res., 1975, 8, 281.
 ³ H. J. Christopher, B.P. 1,315,443 (1973) (Chem. Abs., 1973, 19, 53308); T. Yamazaki and K. Tsuchiya, J. Antibiotics, 1976, 29, 559.
 ⁴ H. J. Christopher, B.P. 1,315,443 (1973) (Chem. Abs., 1973, 19, 53308); T. Yamazaki and K. Tsuchiya, J. Antibiotics, 1976, 29, 559.
- ⁴ T. Asako, T. Soma, H. Masuya, T. Harukawa, and T. Miki, Ger. Offen. 2,165,990 (1972) (Chem. Abs., 1972, 77, 127,059).
- ^b U. Schöllkopf, F. Gerhart, R. Schröder, and D. Hoppe, Annalen, 1972, 766, 116.
- ⁶ D. Hoppe, Angew. Chem. Internat. Edn., 1974, 13, 789.